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Laboratoire de Physique Théorique, UMR 7085 CNRS/ULP, 67084 Strasbourg Cedex, France

Received 2 November 2005 / Received in final form 5 January 2006
Published online 17 February 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. We work out the magnetization and susceptibility of Heisenberg- and XXZ-model antiferro-
magnet spin-1/2 systems in D dimensions under a rigorous constraint of single particle site occupancy.
Quantum and thermal fluctuations are taken into account up to the first order in a loop expansion beyond
the Néel state mean field solution. We discuss the results, their validity in the vicinity of the critical point
and compare them with the results obtained by means of a spin wave approach.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.50.Ee Antiferromagnetics –
75.30.Ds Spin waves – 75.30.Cr Saturation moments and magnetic susceptibilities

1 Introduction

Recent work on quantum spin systems discuss the possi-
ble existence of spin liquid states and in two-dimensional
space dimensions the competition or phase transition be-
tween spin liquid states and an antiferromagnetic Néel
state which is naturally expected to describe Heisenberg
type systems [1–4]. It is also known that undoped super-
conducting systems show an antiferromagnetic phase [5].

In the following we focus our attention on a Néel phase
description of quantum spin systems described by Heisen-
berg models. More precisely we present below a detailed
study of the magnetization and the parallel magnetic sus-
ceptibility of Heisenberg antiferromagnetic spin-1/2 sys-
tems on D-dimensional lattices at finite temperature. The
aim of the work is the study of the physical pertinence
of the Néel state ansatz as a mean-field approximation
in the temperature interval 0 < T < Tc where Tc is the
critical temperature. In order to get a precise answer to
this point we work out the quantum fluctuation contri-
butions beyond the mean-field approximation under the
constraint of strict single site occupancy [6–8,15] which
allows to avoid a Lagrange multiplier approximation [10].
The results are also extended to anisotropic XXZ systems
and compared to those obtained in the framework of the
spin wave approach.

The paper is organized as follows. In Section 2 we
present the derivation of the partition function under the
single particle site occupation constraint. The mean-field
and first order loop expansion term contributions are de-
rived in Section 3. In Section 4 we determine the magne-
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tization and the magnetic susceptibility, and discuss the
results obtained at the different levels of approximation.
Comments are presented and conclusions are drawn in
Section 5. Details of calculations are presented in the ap-
pendix, Section 6.

2 Fermionization of the Heisenberg model
and the partition function

The Heisenberg antiferromagnet Hamiltonian (HAFM) in
the presence of a local magnetic field �Bi reads

H = −1
2

∑

〈i,j〉
Jij

�Si.�Sj +
∑

i

�Bi.�Si (1)

where Jij < 0 and the sums in the first term run over
nearest-neighbour sites 〈i, j〉 on a D-dimensional hyper-
cubic lattice.

The S = 1/2 spin vector operators are expressed in
terms of fermionic creation and annihilation operators
{fiλ, f †

iα}
�Si = f †

iα�σαλfiλ (2)

where the �σαλ vector components are Pauli matrices.
The transformation is rigorous if

∑
α f †

iαfiα = 1. The
Fock space constructed with the fermionic operators f, f †
is not in bijective correspondence with the Hilbert space
of the spin states. Indeed, in Fock space and for spin-1/2
particles, the occupation of each site i can be characterized
by the states |ni,↑, ni,↓〉 with ni,α ∈ {0, 1}, that is states
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|0, 0〉, |1, 0〉, |0, 1〉 and |1, 1〉. But in the case of single oc-
cupancy the states |0, 0〉 and |1, 1〉 which are excluded as
unphysical in the present case have to be eliminated. This
is done by means of a projection procedure proposed by
Popov and Fedotov [6] and generalized to SU(N) symme-
try in reference [8].

Introducing the projection operator P̃ = ei π
2 Ñ where

Ñ =
∑
i,σ

f †
iσfiσ is the number operator the partition func-

tion Z reads
Z = Tr

[
e−βHP̃

]

where β is the inverse temperature. On each site i the
contributions of states |0, 0〉 and |1, 1〉 to Z eliminate each
other. Indeed

〈0, 0|ie−βH .ei π
2 ∗0|0, 0〉i + 〈1, 1|ie−βH .ei π

2 ∗2|1, 1〉i
+〈1, 0|ie−βH .ei π

2 |1, 0〉i + 〈0, 1|ie−βH .ei π
2 |0, 1〉i

= i(〈1, 0|ie−βH |1, 0〉i + 〈1, 0|ie−βH |1, 0〉i).

Hence the partition function

Z =
1
i
.Tr
[
e−β(H−µÑ)

]
(3)

with the imaginary “chemical potential” µ = i π
2β describes

a system with strictly one particle per lattice site, in con-
trast with the usual method which introduces an average
projection by means of a real Lagrange multiplier [9,10].

3 Mean field and one-loop approximations

Following the usual procedure we transform the Heisen-
berg Hamiltonian into a bilinear fermionic expression us-
ing a Hubbard-Stratonovich decoupling. Starting from (3)
this leads to

Z =
1
Z0

∫ ∏

i

D�ϕi

∫

ξiσ(β)=iξiσ(0)

×D(ξ∗iσ , ξiσ)e
− ∫ β

0 dτ

[
∑
i,σ

ξ∗
iσ

∂
∂τ ξiσ+S0[ϕ(τ)]+

∑
i 	ϕi.	Si(τ)

]

(4)

where τ is an imaginary time and

Z0 =
∫ ∏

i

D�ϕie
− ∫ β

0 dτS0[	ϕ(τ)]

S0 [�ϕ(τ)] =
1
2

∑

i,j

J−1
ij (�ϕi(τ) − �Bi).(�ϕj(τ) − �Bj)

where �ϕ stands for the Hubbard-Stratonovich decoupling
fields and ξ for the Grassmann variables.

After integration over the bilinear fermionic {ξiσ}
terms which appear in the action Z takes the form

Z =
1
Z0

∫
D�ϕe−Seff [	ϕ]

where

Seff [�ϕ] =
∫ β

0

dτS0 [�ϕ(τ)]

−
∑

i

ln 2ch
β

2
‖�̄ϕi(ω = 0)‖ + Tr

{ ∞∑

n=1

1
n

(G0M1)n

}
(5)

and (�̄ϕi(ω) = 0) is the Fourier transform of �̄ϕi(τ). The
propagator G0 and M1 are defined in matrix form in ap-
pendix A.1.

In a loop expansion beyond the mean-field approxima-
tion �̄ϕ the effective action given by (5) is expanded in a
Taylor series

Seff [�ϕ] =

Seff

∣∣∣∣∣
[	̄ϕ]

+
∂Seff

∂�ϕ

∣∣∣∣∣
[	̄ϕ]

δ�ϕ +
1
2

∂2Seff

∂�ϕ2

∣∣∣∣∣
[ 	̄ϕ]

δ�ϕ2 + O(δ�ϕ3)

to second order (one-loop contribution) in the fluctuations
�δϕ

2
of �ϕ = �̄ϕ + δ�ϕ. Since the mean field �̄ϕ is chosen in

such a way that ∂Seff

∂	ϕ

∣∣∣
[	̄ϕ]

δ�ϕ = 0 one gets the set of coupled

self-consistent equations

∑

j

J−1
ij

[
�̄ϕj − �Bj

]
=

1
2

�̄ϕi

ϕ̄i
th
[
βϕ̄i

2

]

which fixes the fields �̄ϕ.
In the following we consider a Néel mean-field order

�̄ϕi(τ) = (−1)	π.	riϕ̄z�ez = ϕ̄z
i �ez where �π is the Brioullin

spin sublattice vector. The magnetic field applied to the
system is also chosen to be aligned along the direction �ez.
The partition function can be decomposed into a product
of three terms

Z = ZMF .Zzz .Z+−

where ZMF , Zzz and Z+− are given by

ZMF = e
−Seff

∣∣∣
[ϕ̄]

Zzz =
1

Zzz
0

∫
Dϕze

− 1
2

∂2Seff

∂ϕz2

∣∣∣
[ϕ̄]

δϕz2

Z+− =
1

Z+−
0

∫
D(ϕ+, ϕ−)e

− 1
2

∂2Seff

∂ϕ+∂ϕ−

∣∣∣
[ϕ̄]

δϕ+.δϕ−

with

Seff

∣∣∣
[ϕ̄]

=

β

2

∑

i,j

J−1
ij

[
(ϕ̄z

i − Bz
i ).(ϕ̄z

j − Bz
j )
]−
∑

i

ln 2ch
β

2
‖ϕ̄z

i ‖
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1
2

∂2Seff

∂ϕz2

∣∣∣
[ϕ̄]

δϕz2 =
∑

ω

∑

i,j

β

2

[
J−1

ij

−
(

β

4
th

′
(

β

2
ϕ̄z

i

))
δijδ(ω = 0)

]
δϕz

i (−ω)δϕz
j (ω)

1
2

∂2Seff

∂ϕ+∂ϕ−

∣∣∣
[ϕ̄]

δϕ+δϕ− =

∑

ω

∑

i,j

β

2

⎡

⎣1
2
J−1

ij −
⎛

⎝1
2

th
(

β
2 ϕ̄z

i

)

ϕ̄z
i − iω

⎞

⎠ δij

⎤

⎦ δϕ+
i (−ω)δϕ−

j (ω)

+
∑

ω

∑

i,j

β

2

[
1
2
J−1

ij

]
δϕ+

i (ω)δϕ−
j (−ω) (6)

ZMF is the mean field contribution, Zzz and Z+− are
the one-loop contributions respectively for the longitudi-
nal part δϕz and the transverse parts of �ϕ, δϕ+−, which
take account of the fluctuations around the mean-field
value ϕ̄z .

The contributions Zzz and Z+− are quadratic in the
field variables δϕz , δϕ+− and can be worked out in the
presence of a staggered magnetic field Bz

i . Studies involv-
ing a uniform magnetic field acting on antiferromagnet
quantum spin systems can also be found in reference [8].

4 Magnetization and susceptibility
of d-dimensional systems

4.1 Magnetization

The fields {�̄ϕi} can be related to the magnetizations
{ �̄mi} as shown in Appendix A.2 and the free energy can
be expressed in terms of this order parameter, see Ap-
pendix A.3. The magnetization m on site i is the sum of
a mean field contribution m̄ = − 1

β
∂ lnZMF

∂Bz , a transverse

contribution δm+− = − 1
β

∂ lnZ+−
∂Bz and a longitudinal con-

tribution δmzz = − 1
β

∂ lnZzz

∂Bz . For a small magnetic field �B

a linear approximation leads to m = m̄ + δmzz + δm+−
where

m̄ =
1
2
th

β

2
D|J |m̄

δmzz = − 1
Npβ

∑

	k∈SBZ

8m̄∆m̃0

(
1 − 4m̄2

) (βD|J|γ�k

2

)2

[
1 −
(

βD|J|γ�k

2

)2

(1 − 4m̄2)2
]

δm+− =
(1 + 2D|J |∆m̃0)

4m̄
− 1

Np

×
∑

	k∈SBZ

(
1 + 2D|J |∆m̃0(1 − γ2

	k
)
)

√
1 − γ2

	k

× 1[
th
(
βD|J |m̄

√
1 − γ2

	k

)]

����

��

�
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Fig. 1. Magnetization in a 3D Heisenberg antiferromagnet cu-
bic lattice. Dashed line: Mean field magnetization, Dotted line:
Spin wave magnetization, Full line: One-loop corrected mag-
netization.

Np is the number of spin-1/2 sites, ∆m̃0 =
β
4 (1−4.m̄2)

1−β
2 D|J|(1−4.m̄2)

and γ	k = 1
D

∑
	η∈n.n.

cos(�k.�η), see Ap-

pendix A.3 for details of the derivation.
At low temperature (T → 0) the magnetization goes

over to the corresponding spin-wave expression [7,11–13],
which reads

m = 1 − 1
Np

∑

	k∈SBZ

1

th
(

βD|J|
2

√
1 − γ2

	k

) .
1√

1 − γ2
	k

= m̄ + δm

where m̄ = 1/2 is the mean-field contribution and δm is
generated by thermal and quantum fluctuations.

Figure 1 shows the magnetization m in the mean-field,
the one-loop and the spin wave approach for temperatures
T ≤ Tc where Tc = D|J |/2 corresponds to the critical
point. One observes a sizable contribution of the quantum
and thermal fluctuations generated by the loop contribu-
tion over the whole range of temperatures as well as an
excellent and expected agreement between the quantum
corrected and the spin wave result at very low tempera-
tures.

The magnetization shows a singularity in the neigh-
bourhood of the critical point. This behaviour can be read
from the analytical expressions of δm+− and δmzz and is
generated by the |�k| = 0 mode which leads to γ	k = 1
and by cancellation of m̄. The Néel state mean-field ap-
proximation is a realistic description at very low T . With
increasing temperature this is no longer the case. The cho-
sen ansatz breaks a symmetry whose effect is amplified
as the temperature increases and leads to the well-known
divergence disease observed close to Tc. Hence if higher
order contributions in the loop expansion cannot cure the
singularity the Néel state antiferromagnetic ansatz does
not describe the physical symmetries of the system at the
mean-field level at temperatures in the neighbourhood of
the critical point. Consequently it is not a pertinent mean-
field approximation for the description of the system.

The discrepancy can be quantified by means of the
quantity |∆m|

m̄ where ∆m = m − m̄ = δmzz + δm+−.
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Fig. 2. Ginzburg criterion ∆m
m̄

for the 3D Heisenberg model.
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Fig. 3. Comparison of the Ginzburg criterion for 2D (dashed
line) and 3D (full line) Heisenberg model.

Figure 2 shows the result. The relation |∆m|
m̄ < 1

(Ginzburg criterion) fixes a limit temperature Tlim above
which the quantum and thermal fluctuations generate
larger contributions than the mean-field. For 3D systems
this leads to Tlim � 0.8Tc, for 2D systems the criterion
is never satisfied except maybe for very low temperature,
see Figure 2.

The pathology is the stronger the smaller the space
dimensionality. It is also easy to see on the expression of
the magnetization that, as expected, the contributions of
the quantum fluctuations decrease with increasing D. As
can be seen in the Figure 3, the saddle point breaks down
earlier in two than in three dimensions.

In fact, the Heisenberg model spin wave spectrum
shows a Goldstone mode as a consequence of the sym-
metry breaking by the Néel state. When |�k| goes to zero

ω	k = ZDS
√

1 − γ2
	k

lim
	k→	0

ω	k ∼ |�k|.

The zero mode destroys the long range order in 1D and
2D as expected from the Mermin-Wagner theorem [14].

In the case of the XXZ-model the Hamiltonian of the
system can be written

HXXZ = −J

2

∑

〈ij〉

(
Sx

i Sx
j + Sy

i Sy
j + (1 + δ)Sz

i Sz
j

)

where δ governs the anisotropy. In this case the excitation
spectrum shows a finite |�k| = 0 energy ω	k

ω	k = ZDS

√

1 −
(

J

J + ∆
γ	k

)2

lim
	k→	0

ω	k ∼
√√√√1 −

(
1

1 + δ

)2
(

1 −
�k2

2D

)
.

In Appendix A.4 we develop explicitly the expressions
of the free energy, magnetization and susceptibility. By
examination the expressions show that the zero momen-
tum mode is no longer responsible for a breakdown of the
saddle point procedure near T XXZ

c = D|J+∆|
2 However

the magnetization of the XXZ-model remains infinite near
T XXZ

c . This is due to the common disease shared with the
Heisenberg model that the mean field magnetization ap-
pearing in the denominator of δm+− goes to zero near the
critical temperature. One concludes that the mean-field
Néel state solution makes only sense at low temperatures,
that is for T � Tlim, whatever the degree of symmetry
breaking induced by the mean-field ansatz.

4.2 Susceptibility

We consider the parallel susceptibility χ‖ which charac-
terizes a magnetic system on which a magnetic field is
applied in the Oz direction. The expression of χ‖ decom-
poses again into three contributions

χ‖ = − 1
Np

∂2F
∂B2

∣∣∣∣∣
B=0

= χMF + χzz + χ+−

with

χ‖MF
=∆mχ0 =

β
4

(
1 − 4m̄2

)

1 + β
2 D|J | (1 − 4m̄2)

χ‖zz
= − 1

Npβ

∑

	k∈SBZ

8
(

βD|J|γ�k

2

)2

∆m2
χ0

(
1 + 4m̄2

)

[
1 −
(

βD|J|γ�k

2

)2

(1 − 4m̄2)2
]

χ‖+− =
1

Np

∑

	k∈SBZ

{
−1

2
β (1 − 2D|J |∆mχ0)

2

sh 2 (βD|J |m̄)

+
1

sh 2
(
βD|J |m̄

√
1 − γ2

	k

)

⎡

⎣β

2
(1−2D|J |∆mχ0)

2

−β
(
D|J |∆mχ0γ	k

)2 sh 2βD|J |m̄
√

1 − γ2
	k

βD|J |m̄
√

1 − γ2
	k

⎤

⎦

⎫
⎬

⎭ .

The behaviour of χ‖ is shown in Figure 4 in which we
compare the mean-field, spin wave and the one-loop cor-
rected contributions for a system on a 3D cubic lattice.
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G0 =

[
− 1

det Gp

[
ipδp,q − 1

2
ϕ̄z

i (p − q = 0)δp,q

]
1

det Gp

1
2
ϕ̄−

i (p − q = 0)δp,q

1
det Gp

1
2
ϕ̄+

i (p − q = 0)δp,q − 1
det Gp

[
ipδp,q + 1

2
ϕ̄z

i (p − q = 0)δp,q

]
]
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Fig. 4. Parallel magnetic susceptibility at 3D for Heisenberg
model. Dotted line: Spin wave susceptibility. Dashed line: mean
field susceptibility χ‖MF

. Full line: total susceptibility (χ‖MF
+

δχ‖).

One observes again a good agreement between the quan-
tum corrected and the spin wave expressions at low tem-
peratures. For higher temperatures the curves depart as
expected. The mean-field contribution remains in qualita-
tive agreement with the total contribution.

5 Conclusion

In the present work we aimed to work out the expression
of physical observables (magnetization and susceptibility)
starting from a specific mean field ansatz and including
contribution up to first order in a loop expansion in order
to investigate the effect of fluctuation corrections to mean
field effects at Gaussian approximation. The mean field
is chosen as a Néel state which is an a priori reasonable
choice for spin systems described in terms of unfrustrated
bipartite Heisenberg model. The results are compared to
those obtained in the framework of spin wave theory.

The number of particles per site is fixed by means of a
rigorous constraint implemented in the partition function.
It has been shown elsewhere [7,15] that this fact intro-
duces a large shift of the critical temperature compared
to the case where the constraint in generated through an
ordinary Lagrange multiplier term.

At low temperature the magnetization and the mag-
netic susceptibility are close to the spin wave value as ex-
pected, also in agreement with former work [7]. Quantum
corrections are sizable at low temperatures. With increas-
ing temperature increasing thermal fluctuations add up to
the quantum fluctuations.

At higher temperature the fluctuation contribution of
quantum and thermal nature grow to a singularity in the
neighbourhood of the critical temperature. The assump-
tion that the Néel mean-field contributes for a major part
to the magnetization and the susceptibility is no longer
valid. Approaching Tc the mean field contribution to the

magnetization goes to zero and strong diverging fluctua-
tions are generated at the one-loop order. This behaviour
is common to the Heisenberg and XXZ magnetization. In
addition the Néel order breaks SU(2) symmetry of the
Heisenberg Hamiltonian inducing low momentum fluctu-
ations near Tc which is not the case in the XXZ-model.

The influence of fluctuations decreases with the di-
mension D of the system due to the expected fact that
the mean-field contribution increases relatively to the loop
contribution.

In dimension D = 2 the magnetization verifies the
Mermin and Wagner theorem [14] for T 	= 0, the fluc-
tuations are larger than the mean field contribution for
any temperature. In a more realistic description another
mean-field ansatz may be necessary in order to describe
the correct physics. Indeed, in the neighbourhood of T = 0
Ghaemi and Senthil [3] have shown that a second order
phase transition from a Néel mean field to an ASL (al-
gebraic spin liquid) may be at work depending on the
strength of interaction parameter which enter the Hamil-
tonian of the system. This confirms that another mean
field solution like ASL may be a better starting point as
a Néel state.

The authors would like to thank Drs. D. Cabra and T. Vekua
for instructive discussions.

Appendix

A.1 Matrices G0 and M1

After integration over the fermionic degrees of freedom in
equation (4) the partition function takes the form

Z =
1
Z0

∫
Dϕe−{∫ β

0 dτS0[ϕ(τ)]−ln det[βM ]}

=
1
Z0

∫
Dϕe−Seff [ϕ]

where

Mi,(p,q) =
[
ipδp,q + 1

2ϕz
i (p − q) 1

2ϕ−
i (p − q)

1
2ϕ+

i (p − q) ipδp,q − 1
2ϕz

i (p − q)

]

p and q refer to modified fermionic Matsubara frequencies,
p = ωf − µ = 2π

β (n + 1/4) and n is an integer, see [6]. M

can be put in the form

M = −G−1
0 (1 − G0M1)

where

see equation above
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M1 =
[

1
2δϕz

i (p − q) 1
2δϕ−

i (p − q)
1
2δϕ+

i (p − q) − 1
2δϕz

i (p − q)

]

with δ�ϕi(p − q) = �ϕi(p − q) − �̄ϕi(p − q = 0)δp,q. The
second term in the expression of M corresponds to the
quantum contributions. The expression ln det (βM) can
be developed into a series

ln det (βM) = ln det β
[−G−1

0 (1 − G0M1)
]

= ln det(−βG−1
0 ) + Tr ln(1 − G0M1)

= ln det(−βG−1
0 ) − Tr

{ ∞∑

n=1

1
n

(G0M1)n

}
.

The first term ln det(−βG−1
0 ) leads to the expression∑

i ln 2chβ
2 ‖�ϕi(ω = 0)‖. The first term in the sum gives

the contributions at the one-loop level.

A.2 Relation between the Hubbard-Stratonovich mean
fields ϕ̄i and the mean-field magnetizations m̄i

Using m̄i = −∂FMF

∂Bz
i

one gets

ϕ̄z
j =

2
β

th−12m̄i

ϕ̄z
j − Bj =

∑

i

Ji,jm̄i

2
β

th−12m̄i = Bi +
∑

j

Ji,jm̄j .

Starting from the Néel state m̄i = (−1)im̄+(−1)i∆m̃(B).
For a weak magnetic field the second term can be lin-
earized ∆m̃(B) = ∆m̃0B. The coupling strength ma-
trix acting between nearest neighbour sites is taken as
Jij = J

∑
	η∈n.n.

δ(�ri − �rj ± �η) with J < 0. Then

m̄i = (−1)im̄ + (−1)i∆m̃(B)

=
1
2
th

β

2
[
(−1)iB + Z|J |(−1)i

(m̄ + ∆m̃(B))]

(−1)i(m̄ + ∆m̃(B)) =
1
2
th

β

2
(−1)i

[B + 2.D.|J |.(m̄ + ∆m̃(B))] .

By means of a Taylor expansion around B = 0:

(−1)i(m̄ + ∆m̃(B)) =
1
2
th

β

2
(−1)i.2.D|J |m̄

+
1
2
.
β

2
(−1)i [1 + 2.D|J |∆m̃0]

×
[
1 − th2 β

2
(−1)i2D|J |m̄

]
.B

+ O(B2).

By identification one gets ∆m̃0 =
β
4 [1 + 2.D|J |∆m̃0]

[
1 − 4m̄2

]
and finally

m̄ =
1
2
th

β

2
D|J |m̄

∆m̃(B) = ∆m̃0.B

∆m̃0 =
β
4

(
1 − 4m̄2

)

1 − β
2 D|J | (1 − 4m̄2)

where D is the lattice dimension.

A.3 The free energy and the terms δϕz and δϕ+−

in equation (6)

Substituting m̄i = (−1)i(m̄ + ∆m̃(B) in 1
2

∂2Seff

∂ϕz2

∣∣∣
[ϕ̄]

δϕz2

and 1
2

∂2Seff

∂ϕ+∂ϕ−

∣∣∣
[ϕ̄]

δϕ+δϕ− of equation 6 leads to

(1) =
(

β

4
th

′
(

β

2
ϕ̄z

α

))

=
β

4
(
1 − 4(m̄ + ∆m̃(B))2

)

(2) =

⎛

⎝1
2

th
(

β
2 ϕ̄z

α

)

ϕ̄z
α − iω

⎞

⎠

= [2a]ω + (−1)α [2b]ω

[2a]ω =
(m̄ + ∆m̃(B)).(B + 2D|J |(m̄ + ∆m̃(B)))

[(B + 2D|J |(m̄ + ∆m̃(B)))2 + ω2]

[2b]ω =
iω(m̄ + ∆m̃(B))

[(B + 2D|J |(m̄ + ∆m̃(B)))2 + ω2]
.

Integrating out the fluctuations �δϕ away from the mean
field ϕ̄z leads to

m̄ =
1
2
th

β

2
D|J |m̄

∆m̃(B) =∆m̃0.B

∆m̃0 =
β
4

(
1 − 4.m̄2

)

1 − β
2 D|J | (1 − 4.m̄2)

FMF =NpD|J | (m̄ + ∆m̃(B))2

− Np

β
ln ch

(
β

2
[B + 2D|J |(m̄ + ∆m̃(B))]

)

δFzz =
1
2β

∑

	k∈SBZ

ln
[
1 −
(

βD|J |γ	k

2

)2

× [1 − 4(m̄ + ∆m̃(B))2
]2
]
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δF+− =

2
β

∑

	k∈SBZ

ln

⎛

⎝Sinh
(

β
2

(
[B + 2D|J |(m̄ + ∆m̃(B))]2

Sinh
(

β
2 [B + 2D|J |(m̄ + ∆m̃(B))]

)

−
[
2D|J |γ	k(m̄ + ∆m̃(B))

]2 )1/2)

Sinh
(

β
2 [B + 2D|J |(m̄ + ∆m̃(B))]

)

⎞

⎠ .

A.4 The XXZ-model

The XXZ Hamiltonian

HXXZ = −J

2

∑

〈ij〉

(
Sx

i Sx
j + Sy

i Sy
j + (1 + δ)Sz

i Sz
j

)

leads to a critical temperature

T XXZ
c =

D|J + ∆|
2

∆ = Jδ

and a mean magnetization

m̄ =
1
2
th

β

2
D|J + ∆|m̄

∆m̃(B) = ∆m̃0.B = B.
β
4

(
1 − 4.m̄2

)

1 − β
2 D|J + ∆| (1 − 4.m̄2)

.

A.4.1 Free energy

FMF =NpD|J + ∆| (m̄ + ∆m̃(B))2 − Np

β

× ln ch
(

β

2
[B + 2D|J + ∆|(m̄ + ∆m̃(B))]

)

δFzz =
1
2β

∑

	k∈SBZ

ln
[
1 −
(

βD|J + ∆|γ	k

2

)2

[
1 − 4(m̄ + ∆m̃(B))2

]2
]

δF+− =

2
β

∑

	k∈SBZ

ln

⎛

⎝Sinh
(

β
2

(
[B + 2D|J + ∆|(m̄ + ∆m̃(B))]2

Sinh
(

β
2 [B + 2D|J + ∆|(m̄ + ∆m̃(B))]

)

−
[
2D|J |γ	k(m̄ + ∆m̃(B))

]2 )1/2)

Sinh
(

β
2 [B + 2D|J + ∆|(m̄ + ∆m̃(B))]

)

⎞

⎠ .

A.4.2 Magnetization

m = m̄ + δmzz + δm+−

m̄ = − 1
Np

∂FMF

∂B

∣∣∣∣∣
B=0

δmzz = − 1
Np

∂Fzz

∂B

∣∣∣∣∣
B=0

= − 1
Npβ

∑

	k∈SBZ

8.m̄∆m̃0

(
1 − 4m̄2

) (βD|J+∆|γ�k

2

)2

[
1 −
(

βD|J+∆|γ�k

2

)2

(1 − 4m̄2)
]

δm+− =
(1 + 2D|J + ∆|∆m̃0)

4m̄

− 1
Np

∑

	k∈SBZ

(
1+2D|J + ∆|∆m̃0(1−

(
J

J+∆γ	k

)2

)
)

√
1−
(

J
J+∆γ	k

)2

× 1[
th

(
βD|J |m̄

√
1−
(

J
J+∆γ	k

)2
)] .

A.4.3 Susceptibility

χ‖ = − 1
Np

∂2F
∂B2

∣∣∣∣∣
B=0

= χMF + χzz + χ+−

χ‖MF
=∆mχ0 =

β
4

(
1 − 4.m̄2

)

1 + β
2 D|J + ∆| (1 − 4m̄2)

χ‖zz
= − 1

Npβ

∑

	k∈SBZ

8
(

βD|J+∆|γ�k

2

)2

∆m2
χ0

(
1 + 4m̄2

)

[
1 −
(

βD|J+∆|γ�k

2

)2

(1 − 4m̄2)2
]

χ‖+− =
1

Np

∑

	k∈SBZ

{
−1

2
β (1 − 2D|J + ∆|∆mχ0)

2

sh 2 (βD|J + ∆|m̄)

+
1

sh 2

(
βD|J + ∆|m̄

√
1 −
(

J
J+∆γ	k

)2
)

×

⎡

⎢⎢⎣
β

2
(1−2D|J+∆|∆mχ0)

2−β
(
D|J |∆mχ0γ	k

)2

×
sh 2βD|J + ∆|m̄

√
1 −
(

J
J+∆γ	k

)2

βD|J + ∆|m̄
√

1 −
(

J
J+∆γ	k

)2

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
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